

Approach

The University of Edinburgh's Submission to the WMT22 Code-Mixing Shared Task (MixMT) Faheem Kirefu, Vivek Iyer, Pinzhen Chen, Laurie Burchell School of Informatics, University of Edinburgh

{fkirefu, vivek.iyer, pinzhen.chen, laurie.burchell}@ed.ac.uk

SUBTA	ASK 1 (Hi + En -> Hg)		SUBTASK 2 (Hg -> En)								
1. DATASETS											
Dataset	Generation Method	Pair(s)	Dataset	Generation Method	Pair(s)						
HinGe (Srivastava and Singh, 2021)	Provided by organizers	Hi -> Hg En -> Hg	PHINC (Srivastava and Singh, 2020)	Provided by organizers	Hg->En						
L3Cube-HingCorpus (Nayak and Joshi, 2022)	Hg->En + Hg->Hi BT by XLM model	Hi (BT) -> Hg En (BT) -> Hg	ToxicWiki	Toxic content filtered from WikiMatrix	Hg->En						
CC100-Hindi Romanized (Conneau et al., 2020)	Hg->En + Hg->Hi BT by XLM model	Hi (BT) -> Hg En (BT) -> Hg	Sentiment140 (Sahni et al., 2017)	Public domain dataset	Hg->En						
Transliterated Samanantar (Ramesh et al., 2021)	Transliteration of Hi->Hg using AI4Bharat	En -> Hg (Hi Transl.) Hi -> Hg (Hi Transl.)	Transliterated Samanantar (Ramesh et al., 2021)	Transliteration of Hi->Hg using AI4Bharat	Hg (Hi Transl.) -> En						

2. EXPERIMENTS

- Training paradigm: 1) General domain Training (BT + transliterated corpora), followed by 2) Fine-tuning on HinGE dataset
- We explore Constrained Decoding to constrain Code-switched sentences to Hindi and English inputs

BLEU

- Training paradigm: 1) General domain Training (BT + transliterated corpora), followed by 2) Fine-tuning on Sentiment140 + ToxicWiki, and lastly 3) Fine-tuning on PHINC
- Final model was an ensemble of 4 Hg-En models

Approach

BLEU ChrF++

WER

TER

Baseline (Unconstrained)	18.1	44.0	64.5	85.7
Constrained Decoding	15.0	38.7	73.6	57.0

ChrF++

TER

WER

 Constrained Decoding underperforms as generated Hg output closely resembles En src sentences, likely due to noise in Hg references, whereas Unconstrained produces more diverse translations.

Single model	24.5	47.0	65.1	72.0
Ensemble (of 4)	25.5	48.7	62.9	70.5

- We also explored another pretraining paradigm: Aligned Augmentation.
- Though it resolved some spelling issues and grammatical inconsistencies over random baselines, it did not improve over our original ensemble models.
- Likely reasons include: high-resource setting leading to forgetting, noise in social media test data (vs pretraining data), usage of non-Hindi languages etc.

Approach	BLEU	ChrF++	TER	WER	
Random	24.3	45.2	68.4	74.6	
Aligned		16 0	60 0	74 0	

3. FINAL RESULTS

	BLEU	ChrF++	TER	WER	ROUGE-L	Human eval		BLEU	ChrF++	TER	WER	ROUGE-L	Human eval
UEdin (Subtask-1)	26.9	52.7	55.2	56.2	57.9	3.85	UEdin (Subtask-2)	28.7	51.2	59.1	61.3	62.5	3.75

Performance Highlights!

- ✓ UEdin ranked 2nd on the automatic leaderboards for both subtasks
- ✓ In human evaluation, tied for 1st in Subtask 1 and 2nd in Subtask 2
- ✓ Our results are comparable to the top-performing system(s)