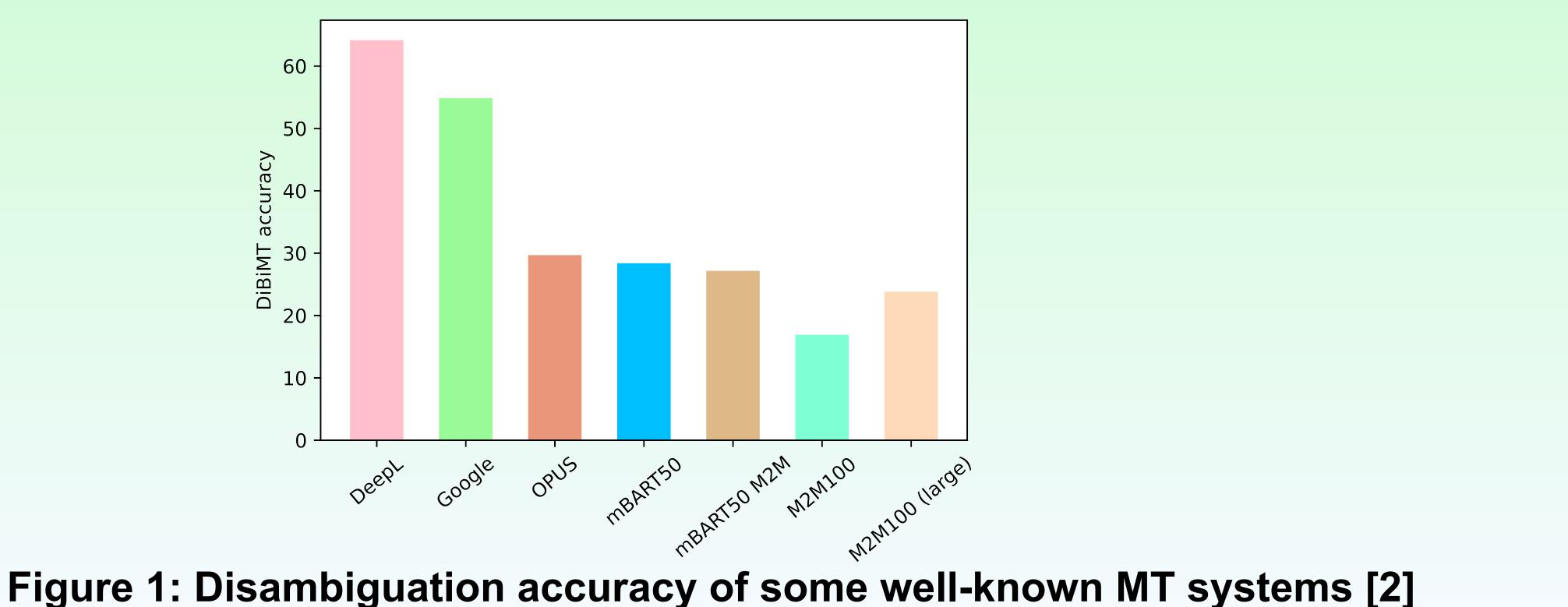
Towards effective disambiguation for Machine Translation with Large Language Models

Vivek lyer, Patrick Chen and Alexandra Birch

WMT 2023

Background

- WSD: "The problem of multiple meanings" in MT (Weaver, 1947)
- Recently, we've seen modern NMT systems can struggle with WSD, especially with polysemous or rare word senses [2].
- DiBiMT ambiguity benchmark [2]: OPUS, mBART50, M2M100 show <30% accuracy for ambiguous word translation; Google and DeepL perform better at 50-60%.

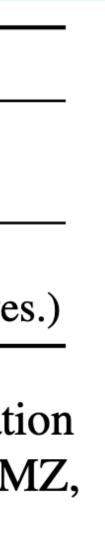


Can LLMs bridge this gap?

- **Challenge:** NMT systems, trained on narrow domain parallel text, can struggle with rarer word senses.
- Advantage of LLMs: More data, more contexts!
- **Disadvantage of LLMs:** Might also prefer fluency over accuracy 🤔
- Our Goal: Detailed analysis of effectiveness of LLMs in translation of ambiguous sentences.

DeepL	那匹马的两眼之间有一团火焰。
-	(There is a flame between the horse's eyes.)
BLOOM	Z 这匹马的眼睛之间有一道白线。
(176B)	(There is a white line between the horse's eyes

involving an ambiguous term "blaze". For BLOOMZ, we use 1-shot prompting to obtain the translation.



Contributions

- Compare LLMs vs NMT systems on "ambiguous translation" of 5 languages
 - 12 NMT models: Commercial & Open-Source MT systems
 - 7 LLMs: Base & instruction-tuned models of varying {multilinguality, size}
- Adapt LLMs for disambiguation
 - ICL with similar ambiguous contexts
 - LoRA FT on curated *ambiguous corpora* •
- Evaluate on FLORES-200 [7] to confirm gains in overall MT quality

Definitions

- Word Senses: contextualized meaning of a word
- Ambiguous MT: translating lexically "ambiguous" words in a sentence
 - Rare senses (low "sense frequency")
 - Polysemous senses (high "polysemy degree")

i.e. Being clear about what I mean (MUST prevent irony)

Table 1a) NMT Systems

Category	System	# Params		Category	System	# Params
Commercial	Google Translate ¹					
	DeepL ²	Unknown	UTKHOWH		BLOOM [11]	7B
Open-source	OPUS [8]	74M				176B
	mBART50 [9]	611M		BLOOM family	BLOOMZ [12] LLaMa [13]	7B
	M2M100 [10]	418M				176B
		1.2B				
		0.6B				7B
	NLLB-200 [7]	1.3B		LLaMa family		65B
		3.3B				
		54B			Alpaca [14]	7B

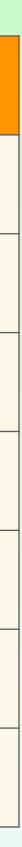
DiBiMT pairs

Evaluation Setup

We select the leading NMT systems and most widely used LLMs¹ for evaluation.

Table 1b)LLMs

¹at the time of experiment formulation



The DiBiMT Benchmark

- DiBiMT:
 - 500 ambiguous sentences
 - 1 ambiguous word per sentence
- Given an ambiguous word in a sentence:
 - Accuracy = %Good / (%Good + %Bad)
 - MISS cases: Neither "Good", Nor "Bad". Unknown!

Human-curated and verified "Good" + "Bad" translations of this word

Naive setting: k-shot prompting

• We choose demonstrations randomly from the dev set.

Translate the following sentence from {src_lang} to {tgt_lang}: {src_demo1} The translation in {tgt_lang} is: {tgt_demo1} k demonstrations

The translation in {tgt_lang} is: {tgt_demok}

[FOUNDATION LLM]

Translate the following sentence from {src_lang} to {tgt_lang}: {src_test} The translation in {tgt_lang} is:

[INSTRUCTION-TUNED LLM]

Can you translate the input sentence to {tgt_lang}?

Figure 2: Template used for k-shot prompting

```
Translate the following sentence from {src lang} to {tgt lang}: {src demok}
```

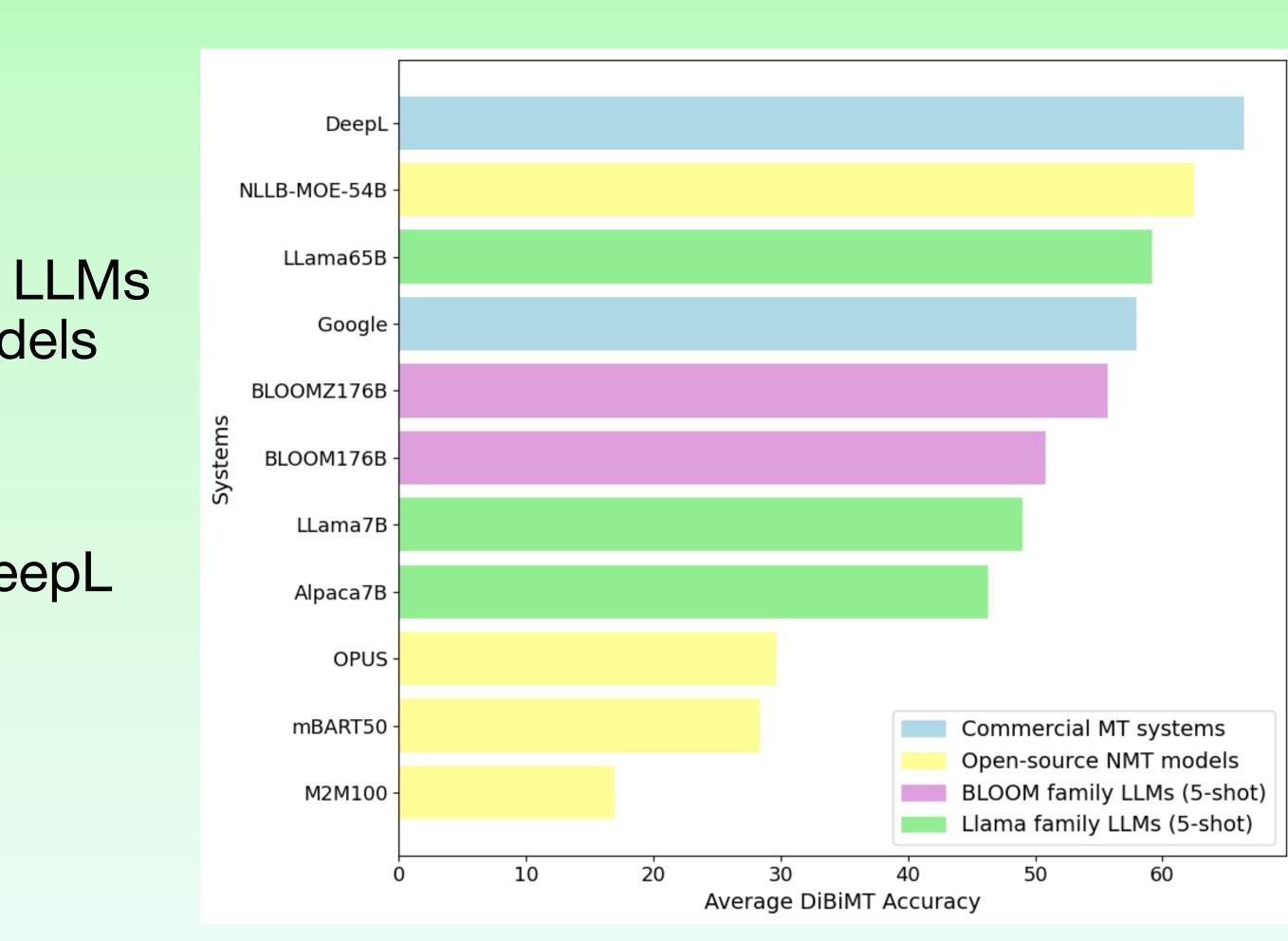
OR

```
Translate the following sentence from {src lang} to {tgt lang}: {src test}
```

Results (random k-shot prompting)

On average:

- Naive 5-shot prompting of int8 quantised LLMs outperforms many open-source NMT models
- Matches Google Translate
- Slightly underperforms SOTA systems (DeepL and NLLB) on the DiBiMT benchmark.



More nuanced results

Table 2: DiBiMT accuracy for languages a) seen and b) unseen¹ by LLMs during pretraining.

System	En-Es	En-It	En-Zh	En-Ru	En-De
DeepL	63.91	65.47	58.42	67.53	<u>76.64</u>
Google	54.73	53.59	52.09	62.03	67.35
NLLB 54B	61.33	<u>67.19</u>	48.02	<u>67.88</u>	67.97
LLaMA 7B	56.33	48.66	27.92	56.83	55.26
LLaMA 65B	60.78	63.47	42.49	66.31	62.98
BLOOM 176B	65.53	45.99	61.73	42.92	38.06
BLOOMZ 176B	<u>68.55</u>	49.22	<u>63.36</u>	52.6	44.94

- Seen languages: BLOOMZ leading in 2 languages (En-Es and En-Zh)
- **Unseen languages:** Worse than NMT systems; hallucination
- Foundation LLMs << Instruction-tuned LLMs
- Scale 1, Performance 1

¹Not intentionally included in the pretraining set

So, what do LLMs get wrong? A qualitative comparison

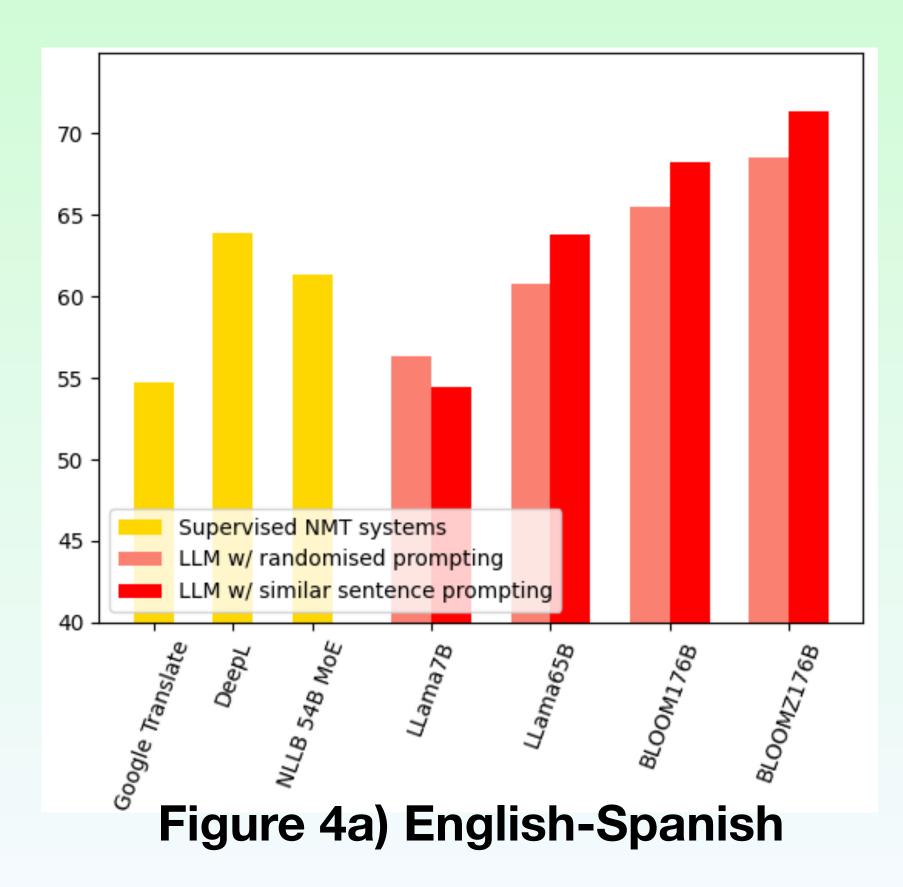
- 20 predictions for En-Zh DiBiMT: DeepL and BLOOMZ 176B (1-shot)
 - DeepL: Better overall at MT but can be too literal lacksquare
 - BLOOMZ: Contextual translations but can omit details

#	Source	BLOOMZ	DeepL
1	He's not in my line of business.	他不是我的生意。 He is not my business. (did not translate "line")	他不在我的业务范围内 . He is out of my business (area).
2	He waited impatiently in the blind.	他焦急地等待着。 He waited anxiously (did not translate "in the blind")	他在盲人区等得不耐烦. He waited impatiently in the area designated to be used by blind people
3	How much head do you have at the Glens Falls feeder dam?	你有多少头牛在格伦瀑布的蓄水池里? How many cows do you have in the reservoir/cistern at Glen Falls?	格伦瀑布支坝的水头有多大? How big is the water head at the Glen Falls branch dam?
4	The mechanic bled the engine.	机械师在引擎上流血。 the mechanic is bleeding on the engine	机械师给发动机放气. the mechanic is getting rid of air from the engine

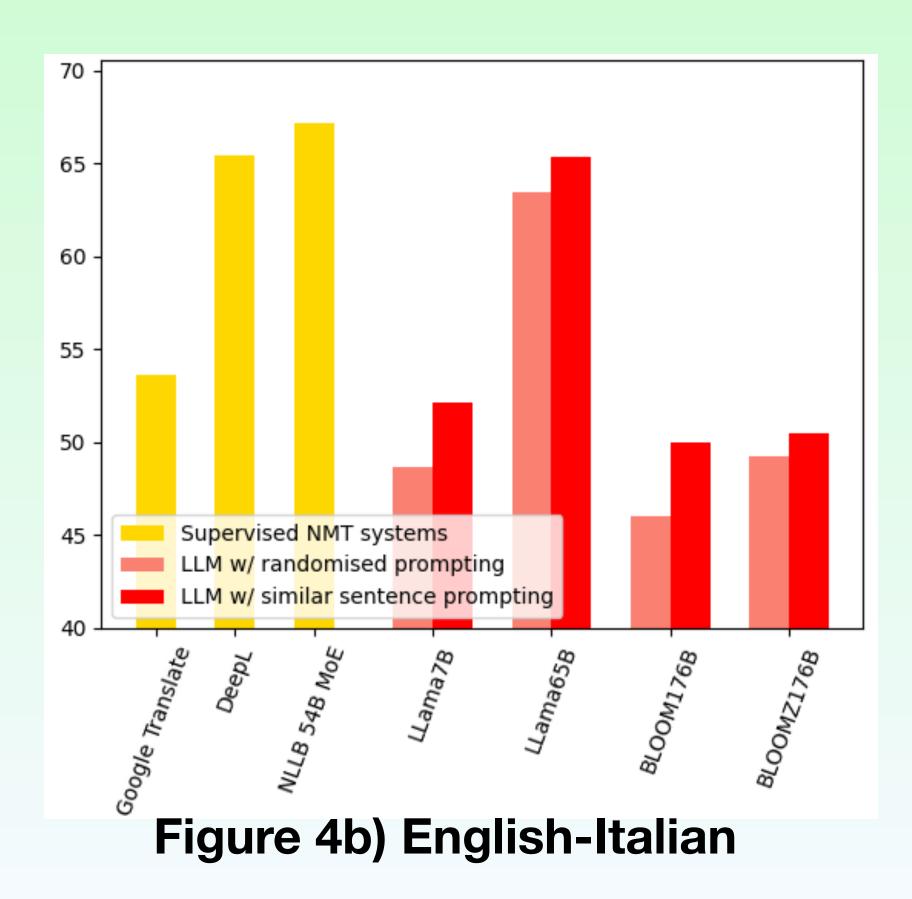
Table 11: BLOOMZ ERROR cases on DiBiMT

Improvement 1: In-context Learning with similar ambiguous contexts

- Larger LLMs gain more
- More examples, more gains!



Demonstrations = other "same-sense" occurrences of the ambiguous word in dev corpus



Improvement 2: LoRA Fine-Tuning

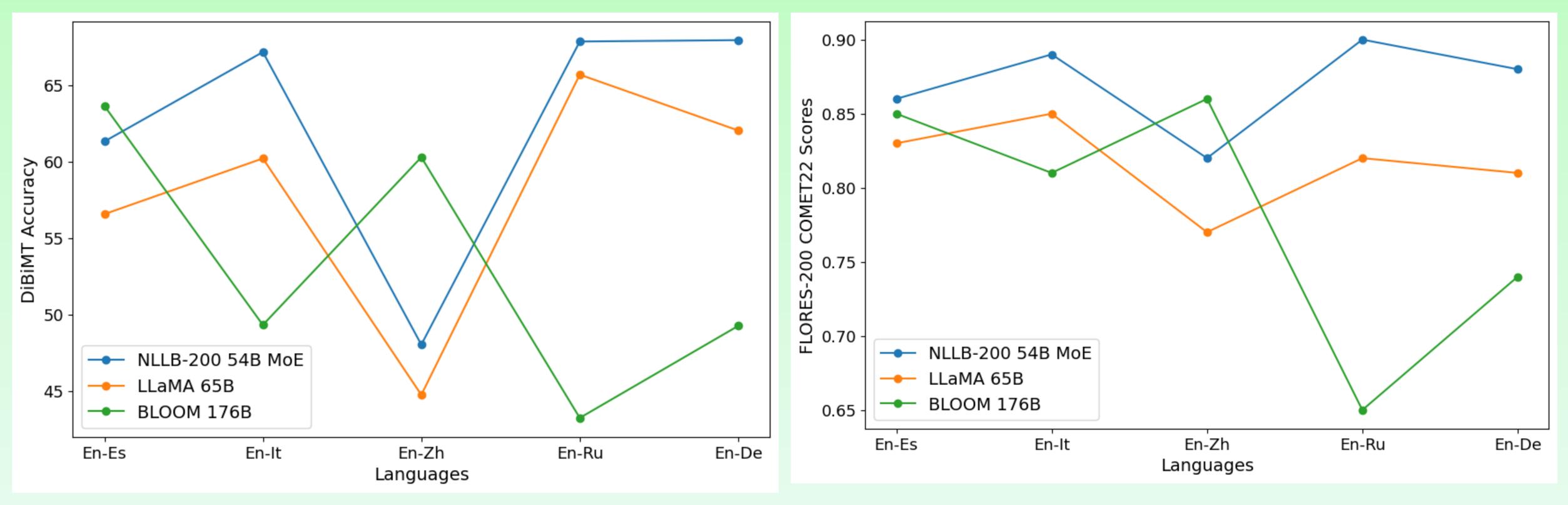
- ambiguous sentences from Europarl
- LoRA FT: Alpaca, BLOOM and BLOOMZ 7B
- Improves Accuracy.
 - 2 epochs with ~65K sentences are sufficient

System	Alpaca 7B	BLOOM 7B	BLOOMZ 7B	Alpaca 7B	BLOOM 7B	BLOOMZ 7B
w/o FT	49.75	55.69	60.87	45.24	28.79	40.68
FT	63.27	57.86	60.39	59.62	37.72	39.73

• We curate Ambiguous Europarl (<u>https://data.statmt.org/ambiguous-europarl</u>) by filtering out most

FLORES 200 Evaluation

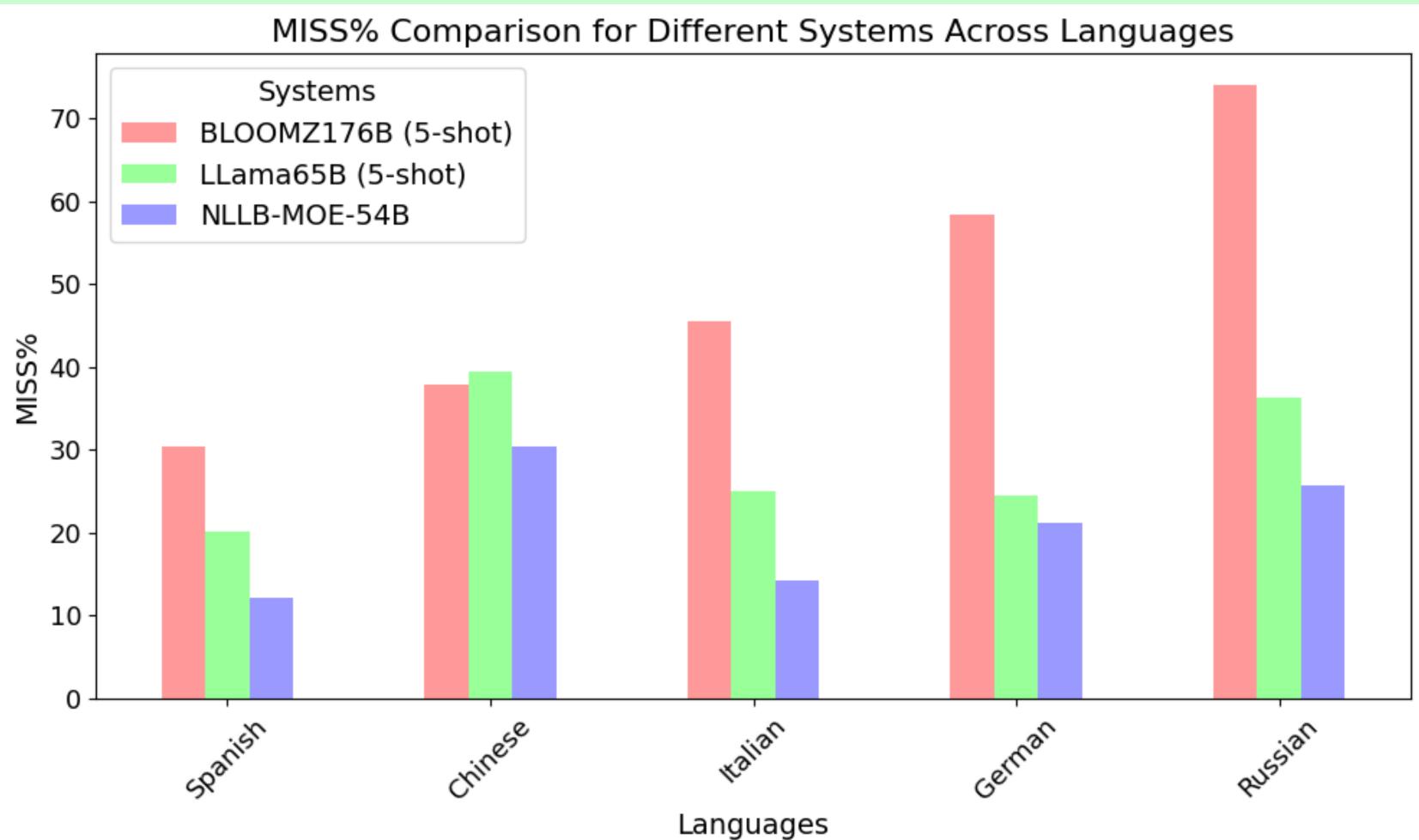
Q1. How do these trends extend to overall MT quality?



- Similar trends; COMET22 is less drastic than DiBiMT accuracy
 - NLLB-200 54B MoE >> 1-shot LLaMa 65B
 - BLOOM ~ NLLB on seen languages (En-Es & En-Zh).

Wait... we MISSed something

- What about MISS%? Translations that are neither Good/Bad unknown category! •
- High MISS% for BLOOMZ on "unseen" languages! Less for Llama •



Conclusion

- Open-source LLMs¹ are competitive, but do not consistently beat NMT models like NLLB-200/DeepL. Reasons:
 - Lack of multilinguality
 - Lack of instruction-tuning at scale
 - Hallucination (omission, wrong language etc.)
- But, still pretty darn promising!
 - More flexible and adaptable than MT systems

 - Disambiguation tuning improves overall MT quality too

¹The ones we tested (<Aug 2023)

Can tune for WSD with a) ICL w/ similar contexts, and b) LoRA FT on curated corpora

Questions are unambiguously welcome :)

THANK YOU!

References

[1] Weaver, W. (1952). Translation. In Proceedings of the Conference on Mechanical Translation.

[2] Campolungo, N., Martelli, F., Saina, F., & Navigli, R. (2022, May). DiBiMT: A novel benchmark for measuring Word Sense Disambiguation biases in Machine Translation. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 4331-4352).

[3] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., ... & Fiedel, N. (2022). Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311.

[4] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., ... & Fedus, W. (2022). Emergent abilities of large language models. Transactions on Machine Learning Research 2022 (pp. 2835-8856).

[5] Vilar, D., Freitag, M., Cherry, C., Luo, J., Ratnakar, V., & Foster, G. (2022). Prompting palm for translation: Assessing strategies and performance. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15406–15427, Toronto, Canada. Association for Computational Linguistics.

[6] Zhang, B., Haddow, B., & Birch, A. (2023). Prompting large language model for machine translation: A case study. In Proceedings of the 40th International Conference on Machine Learning (ICML'23), Vol. 202. JMLR.org, Article 1722, 41092-41110.

[7] Costa-jussà, M. R., Cross, J., Çelebi, O., Elbayad, M., Heafield, K., Heffernan, K., ... & NLLB Team. (2022). No language left behind: Scaling human-centered machine translation. arXiv preprint arXiv:2207.04672.

[8] Tiedemann, J., & Thottingal, S. (2020, November). OPUS-MT--Building open translation services for the World. In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation. European Association for Machine Translation.

References

[9] Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, and Angela Fan. 2021. Multilingual Translation from Denoising Pre-Training. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3450–3466, Online. Association for Computational Linguistics

[10] Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S., ... & Joulin, A. (2021). Beyond english-centric multilingual machine translation. The Journal of Machine Learning Research, 22(1), 4839-4886.

[11] Workshop, B., Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., ... & Bari, M. S. (2022). Bloom: A 176b-parameter openaccess multilingual language model. arXiv preprint arXiv:2211.05100.

[12] Muennighoff, N., Wang, T., Sutawika, L., Roberts, A., Biderman, S., Scao, T. L., ... & Raffel, C. (2022). Crosslingual generalization through multitask finetuning. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15991–16111, Toronto, Canada. Association for Computational Linguistics.

[13] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... & Lample, G. (2023). Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.

[14] Taori, R., Gulrajani I., Zhang T., Dubois Y., Li X., Guestrin C., Liang P., and Hashimoto T. 2023. Stanford Alpaca: An instruction-following LLaMA model. <u>https://github.com/tatsu-lab/stanford_alpaca</u>

[15] Navigli, R., Bevilacqua, M., Conia, S., Montagnini, D., & Cecconi, F. (2021, August). Ten Years of BabelNet: A Survey. In IJCAI (pp. 4559-4567)

[16] Barba, E., Pasini, T., & Navigli, R. (2021, June). ESC: Redesigning WSD with extractive sense comprehension. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 4661-4672).

