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2. CODE-SWITCHED PRETRAINING (CSP)

* Popular NMT pretraining approach, eg. AA (Pan et al., 2021)
» Synthetic Code-Switching: Words <=> Lexical Translations
» “Sense-agnostic” pretraining!!
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Fig 1: Sourced from Figure 6, Pan et al., 2021

3. MOTIVATION

ldea: Disambiguate, then Code-Switch with word sense translations!
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4. CONTRIBUTIONS

1. Sense-pivoted pretraining can improve overall MT quality
and WSD performance

Source Sentence: He had an on the competition.
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. l Baseline Translation (AA): Ha avuto un margine alla concorrenza.

2. KGs + mMNMT pretraining = better {reliability, accuracy}

. . Our Translation (WSP-NMT): Aveva un vantaggio sulla concorrenza.

Fig 2: AA vs WSP-NMT. Margine=edge, vantagqgio=advantage 3. Super effective in data-constrained scenarios!

5. APPROACH (WSP-NMT)
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b) Our method: WSP-NMT (Sense-Pivoted Pretraining)

7. RESULTS (AMBIGUOUS MT)

Significant gains in verb disambiguation!

6. RESULTS (OVERALL MT)
M Consistent gains! Sense-pivoted

retraining helps :- 35
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9. APPLICATIONS
[ Domain-specific MT

8. SCALING TO RESOURCE-CONSTRAINED SETTINGS

A) Data size vs Performance B) Zero-Shot Translation
*less data, well-resourced langs
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Highly effective in low & medium data setups! Need disambiguation resources :(




