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Agenda

Motivate the problem

* | exical ambiguity in NMT
Problems with current NMT pretraining paradigm
Discuss “code-switched pretraining”
Distinguish from human code-switching
Explain our approach: code-switching with word senses
Discuss (qualitative + quantitative) results

Finally, mention some applications



The Problem

 |[exical Ambiguity is a fundamental challenge in MT

e “Problem of multiple meanings” (Weaver, 1947)
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Motivation

« Many modern-day NMT systems struggle with WSD, and display several biases against
rare or polysemous word senses (Campolungo et al., 2022)
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Figure 1: Disambiguation accuracy of some well-known MT systems [3]

Why?

* We hypothesise the answer lies in “sense-agnostic” NMT pretraining!
Particularly, code-switched pretraining



Code-Switched Pretraining: A review

* Along with masked denoising (eg. mMBART), one of the most common pretraining techniques in
NMT over the last 4 years [1][2][3][4][5][6][7]

» Synthetic Code-Switching of words in a sentence with lexical translations. Random & Multilingual
* Aligned Augmentation (AA) [3]: Noteworthy work in this area
* NMT models are pretrained to “de-codeswitch” these sentences.

* Resulting models show strong cross-lingual convergence; huge improvements in MT scores

Original (En) | One more point is lost in this debate: that the EU is proposing far fewer rules now.

AA One BbIcOKOrO TOVTOG TOM perduti ‘stJI tento diskusijos : tuo cette EU is soovitab i < {1
periaMeHT e

Original (En) | " If we don 't win , there will be some inquiries of why we haven't , " Graves told BBC Radio Leeds.

AA " If noi annetada 't NYMLN , = Z xouy jet sometime oUTNOELS seine kuna bize haven't , " Graves
erziahlte BBC Radio Leeds.

Source: Figure 6, Pan et al., 2021. Contrastive Learning for Many-to-many Multilingual Neural Machine Translation.



So, what’s the problem?

Polysemy! => Lexical translations randomly chosen

“Sense-agnostic pretraining”: Synthetic code-switching happens at the
word-level, not the sense-level

Potential cause for WSD biases/failures?

We propose “Sense-pivoted pretraining” => Move code-switching to the
sense level, rather than the word level

) L

e Source Sentence: He had an on the competition.

. . Baseline Translation (AA): Ha avuto un margine alla concorrenza.

. . Our Translation (WSP-NMT): Aveva un vantaggio sulla concorrenza.

Figure 3: AA vs WSP-NMT. Margine=edge, vantaggio=advantage



A note on code-switching

 What does this presentation discuss?

* Jechnigue for generating synthetic code-switched data

 Why are we generating this data?
* For pretraining general-purpose multilingual NMT models

e \We do not seek to evaluate on code-switched MT

 How would this differ from human code-switching?
e Does not follow definitive rules/patterns. Quite random, massively multilingual

 Purpose Is to teach NMT systems lexical translation!



Contributions

* We propose Word Sense Pretraining for Neural Machine Translation
(WSP-NMT), using WSD + KG for code-switching

 WSD-based code-switching > lexicon-based code-switching
 KG in NMT pretraining => less errors, better quality
* EXperiments In data and resource-constrained scenarios

* Evaluate disambiguation performance on DIBIMT MT benchmark



Approach
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b) Our method: WSP-NMT (Sense-Pivoted Pretraining)

In NMT pretraining, CS sentence is aligned with original sentence w/
contrastive loss (+ cross entropy)



Experimental Setting

* Primary baseline: Aligned Augmentation (AA) [3]

* Multilingual NMT pretraining on Romance languages (En-Es, En-Fr,
En-It, En-Ro).
 Parallel + mono data
* En-Pt Is zero-shot.

 CS done with AA and WSP-NMT: shuffled

* WSD systems:
 AMUSE-WSD (cheap, yet competitive)
 ESCHER (slow, but prev. SOTA on English WSD)



Main Results

2.0 -

4 Consistent gains over AA WSP-NMT (AMUSE-WSD)
& WSP-NMT (ESCHER)

WSP-NMT (ESCHER) w/ morph. inflection

I Better WSD (ESCHER) = better MT
quality. But AMuSE-WSD is effective too!
(2.3x cheaper)
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Figure 4: Overall MT quality (spBLEU)
gains for WSP-NMT over AA



Resource-Constrained Settings

a) Data quantity vs performance

20 -
18 - ,,’ AA (En-X)

e WSP-NMT (En-X)
16 - AA (X-En)

- == WSP-NMT (X-En)

50K 100K 125K 250K 500K 750K 1M  125M 15M
Parallel data (per language)

Highly effective in low & medium data
(<750K parallel sents) settings!

b) Zero-shot MT

Table 1: Zero-shot spBLEU

Baseline En-Pt Pt-En
AA 2.92 6.88
WSP-NMT 3.60 8.52

Enhanced multilingual convergence =
Significant zero-shot gains




Scaling to Under-Represented Languages
(Zero-shot WSD)

* Multilingual NMT for Indo-lranian Languages (En-Hi, En-Fa)
» Zero-shot AMUSE-WSD
* No improvements observed :(

* Rooted in unavailability of disambiguation resources for training
* Direction for future research
 Low amount of annotated data should suffice!

Baseline

WSP-NMT




Disambiguation Results

* DIBIMT ambiguity benchmark for MT
* 500 sentences, with 1 ambiguous word

* Accuracy = % Good Translations/ (% Good + % Bad) Translations

* Accuracy (ALL) 1, Accuracy (NOUN) =, Accuracy (Verb) 1 1
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Verb Disambiguation Examples

:\: :/: sSource: The company a good profit after a year.
Figure 5a. “trasformato” = “transformed” ) . . L'impresa ha trasformato un buon profitto dopo un anno.

“fatto” = “made” (i.e. made a good profit)

l . WSP-NMT: La societa ha fatto un buon profitto dopo un anno.

:\: :/: Source: To money for the increase of the navy.
Figure 5b. “adeguare” = "adapt”/"adjust” x . . Per adeguare il denaro per I'aumento della tassa.

“stanziare” = “allocate” (eg. to allocate funds)

. . WSP-NMT: Per stanziare fondi per I'aumento dell'imbarcazione.

:\: :/: Source: The player had to before catching the ball.
Figure 5c. “"Aveva dovuto tornare™ = "had to return” x . . AA: Il giocatore aveva dovuto tornare prima di catturare la balla.

“tornato indietro” = “move (or run) back”

. . WSP-NMT: Il giocatore era tornato indietro prima di prendere la palla.



Conclusion

* Advantages:
* More reliability with KG, better quality MT, less errors
» Super useful in low/medium data settings!

Disadvantages:
* Need WSD resources (Well-resourced languages)

Applications:
* Domain-specific translation
* Information-centric domains
* (Potentially) better CS translation?



THANK YOU!

Questions are unambiguously welcome :)
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